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Abstract 

A new multi-label machine learning-based model is proposed for membrane-based absorbers 

used in absorption heat pumps and chillers. The model offers the accuracy of a numerical model 

with the computational efficiency of an analytical model. A comprehensive dataset, comprising 

of 100,000 data points, is generated using 2D numerical modeling. The dataset consists of 15 

input parameters, including operating conditions and geometrical parameters, and four output 

variables including absorption rate, outlet concentration, solution outlet temperature, and heat 

transfer fluid outlet temperature. Support Vector Regressor, Random Forest Regressor, and 

Decision Tree Regressor algorithms are used to develop the present model. The results of the 

proposed model are validated with the experimental data available in the literature, capturing the 

trend of the data with a relative difference of 15%. It is shown that the present machine learning-

based model can predict the four outputs with an accuracy of over 90%. 

Keywords: machine learning; absorption chillers and heat pumps; membrane-based absorber; 

heat and mass transfer; and membrane technology. 

1. Introduction 

Several studies have been conducted to analyze a membrane-based absorber’s performance 

using computational fluid dynamics (CFD) and other numerical methods [1–4]. These methods 

can produce detailed results; however, implementing such models incurs a high computational 

cost. Analytical models [5,6] offer efficient computation, but they may have limiting 

assumptions such as isothermal boundary condition at the heat exchanger wall. As such, they 

cannot consider the temperature lift and heat exchanger wall thickness.   

There are only a few studies on membrane-based absorbers that use machine learning, and 

they are generally for minimizing flow maldistribution in membrane-based absorbers [7], 

geometry optimization [8], or investigating the available ionic liquid absorbents for absorption 

heat pumps [9]. In this study, we propose a new multi-label machine learning-based model for 

membrane-based absorbers used in absorption chillers and heat pumps for the first time. A multi-

label machine learning model enables predicting more than one independent variable. A 

comprehensive dataset, comprising of 100,000 data points, is generated using our 2D numerical 

model, which was run on Compute Canada’s supercomputers, namely, Narval, Cedar, Graham, 

and Beluga [10]. x   

2. Problem description  

Coupled heat and mass transfer in membrane-based absorbers is numerically studied for two 

configurations: i) the single-sided configuration, where the absorption heat is transferred to the 

heat transfer fluid only from one side, shown in Fig. 1(a); and ii) the double-sided configuration, 
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in which the absorption heat is transferred to the heat transfer fluid from both sides, shown in 

Fig. 1(b). Lithium bromide-water is used as the solution, which is the most common absorbent in 

absorption chillers/heat pumps. The liquid solution is constrained by a microporous/nanofibrous 

membrane and a plate heat exchanger. The membrane is impermeable to the LiBr-water solution, 

while water vapor can traverse the membrane leading to water vapor absorption at the 

membrane-solution interface.  

  
(a) (b) 

 
Fig. 1. A schematic diagram of a membrane-based absorber over a heat exchanger. (a) the single-sided 

configuration; and (b) the double-sided configuration (symmetry boundary condition is applied). 

3. Model development 

The following governing equations for energy and species conservation can be derived for 

the advective transport in the flow direction    and diffusivity transport in the    direction for the 

solution domain: 

   

   

  
   

     

   
 

     

   

   

  
   

    

   
 

     

where,  ,   ,    and    are the solution’s temperature, thermal diffusivity, concentration, and 

mass diffusivity, respectively. Energy equations for the heat transfer fluid and heat exchanger 

wall can be written as follows: 

     

     

  
     

       

     
      

      

    
  

      

   
 

       

where     ,     , and     are the heat transfer fluid’s temperature, thermal diffusivity, and 

heat exchangers’ temperature, respectively. The Dusty-Gas model [11] is used to model the mass 

transfer through the membrane: 

                   
  

    
      

where,   ,   , and      are the membrane mass transfer coefficient, vapor pressure, and water 

vapor partial pressure at the membrane-solution interface, respectively. The governing equations 

should be solved simultaneously and iteratively. A finite difference method was used to solve the 

governing equations. The first and second derivatives of the parameters were discretized using a 

central difference method. Virtual nodes were considered to couple the boundary conditions to 
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the domain to maintain second-order accuracy. All the equations were solved iteratively until a 

residual of 10
-8

 was reached for each parameter. Thermophysical properties for the solution and 

the heat transfer fluid were calculated at each iteration, more details can be found in Ref [12]. 

Computations were performed on Compute Canada’s supercomputers, namely, Narval, Cedar, 

Graham, and Beluga [10]. 

 

4. Machine learning process 
 

4.1. Data description  

This study generated a dataset, comprising of 100,000 data, using our 2D numerical model 

for a membrane-based absorber. The dataset includes 15 features, which are the input parameters 

in a machine learning model, including operating conditions and geometrical parameters listed in 

Table 1. There are 4 labels, which are the selected output parameters of the model, including 

absorption rate, outlet concentration, solution outlet temperature, and heat transfer fluid outlet 

temperature. The range for the selected features has been picked to cover all practical operating 

conditions and geometrical parameters of an actual absorption setup available in the literature 

[13–15] to ensure usability of the present machine learning-based model.  

Table 1- The features’ ranges used for the current machine learning-based model. 

Feature name 
Feature 

type 
Feature range 

Available experimental 

range in the literature [13–

15] 

Absorber length        Numeric           

Solution thickness         Numeric                

Average solution velocity      
  

 
  Numeric             

Solution inlet temperature     
    Numeric              

Water inlet concentration     
        

           
 * Numeric                    

Heat transfer fluid inlet temperature       
    Numeric             

Vapor pressure          Numeric                       

Membrane porosity   Numeric               

Membrane pore diameter          Numeric              

Membrane thickness         Numeric                

Heat exchanger wall thickness          Numeric           

Heat transfer fluid thickness           Numeric                

Heat exchanger thermal conductivity      
 

   
  Numeric 

13-17 Stainless steel 
Both 

170-230 Aluminum  

Average heat transfer fluid velocity         
  

 
  Numeric 

                      
    

                         

Configuration Binary  
0 single-sided configuration  

Single-sided configuration 
1 double-sided configuration 

* Water concentration        where   is the solution concentration. 

4.2. Machine learning-based model development 

The Support Vector Regressor (SVR) [16], Random Forest Regressor (RFR) [17], and 

Decision Tree Regressor (DTR) [18] are implemented and combined to improve the model’s 

accuracy. 90% of the dataset is used for training, and 10% is used for testing. Figure 2 shows the 

predicted label versus the actual label based on the numerical modeling. The following can be 

observed: i) the absorption rate can be predicted with an accuracy of 90%; ii) the outlet 

143 / 710



 

4 
 

3rd to 6th of September 2023 

The University of Edinburgh, Scotland 

concentration can be predicted with an accuracy of 98%; and iii) the solution outlet temperature 

and heat transfer fluid outlet temperature can be predicted with an accuracy of ± 99.5%. 

  
(a) (b) 

  
(c) (d) 

Fig. 2.  The predicted label versus the actual label based on numerical modeling for the present labels. 

4.3.Validation with experimental data 

The machine learning model is validated with 

experimental data from Isfahani et al. [13,14]. As shown in 

Fig. 3, the present model can predict the experimental data, 

capturing data within a relative difference of 15%.  

Conclusion  

In this study, we proposed a multi-label machine learning-

based model for membrane-based absorbers used in 

absorption heat pumps and chillers for the first time. The 

generated dataset, comprising of 100,000 data, consists of 15 

input parameters, including operating conditions and 

geometrical parameters, and four output variables, i.e., the 
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Fig. 3.  Validation of the present machine learning 

based model with experimental data from Refs. 

[13,14].  
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absorption rate, outlet concentration, solution outlet temperature, and heat transfer fluid outlet 

temperature. The results of the machine learning-based model were validated with experimental 

data.  

Supplementary data 

The present machine learning model and dataset are shared on GitHub, enabling prospective 

readers to perform real-time absorber control, optimization, and design in an accurate, time-

efficient manner. 
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